A Conservative Discontinuous Galerkin Scheme with O(N ) Operations in Computing Boltzmann Collision Weight Matrix
نویسندگان
چکیده
In the present work, we propose a deterministic numerical solver for the homogeneous Boltzmann equation based on Discontinuous Galerkin (DG) methods. The weak form of the collision operator is approximated by a quadratic form in linear algebra setting. We employ the property of “shifting symmetry” in the weight matrix to reduce the computing complexity from theoretical O(N) down to O(N), with N the total number of freedom for d-dimensional velocity space. In addition, the sparsity is also explored to further reduce the storage complexity. To apply lower order polynomials and resolve loss of conserved quantities, we invoke the conservation routine at every time step to enforce the conservation of desired moments (mass, momentum and/or energy), with only linear complexity. Due to the locality of the DG schemes, the whole computing process is well parallelized using hybrid OpenMP and MPI. The current work only considers integrable angular cross-sections under elastic and/or inelastic interaction laws. Numerical results on 2-D and 3-D problems are shown.
منابع مشابه
Deterministic Solution of the Boltzmann Equation Using a Discontinuous Galerkin Velocity Discretization
We propose an approach for high order discretization of the Boltzmann equation in the velocity space using discontinuous Galerkin methods. Our approach employs a reformulation of the collision integral in the form of a bilinear operator with a time-independent kernel. In the fully non-linear case the complexity of the method is O(n8) operations per spatial cell where n is the number of degrees ...
متن کاملA Spectral-Element Discontinuous Galerkin Lattice Boltzmann Method for Incompressible Flows
We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving single-phase incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based...
متن کاملPositivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations
We develop a high-order positivity-preserving discontinuous Galerkin (DG) scheme for linear Vlasov-Boltzmann transport equations (Vlasov-BTE) under the action of quadratically confined electrostatic potentials. The solutions of such BTEs are positive probability distribution functions and it is very challenging to have a mass-conservative, high-order accurate scheme that preserves positivity of...
متن کاملA Sparse Grid Discontinuous Galerkin Method for High-Dimensional Transport Equations and Its Application to Kinetic Simulations
In this talk, we present a sparse grid discontinuous Galerkin (DG) scheme for transport equations and applied it to kinetic simulations. The method uses the weak formulations of traditional Runge-Kutta DG schemes for hyperbolic problems and is proven to be L stable and convergent. A major advantage of the scheme lies in its low computational and storage cost due to the employed sparse finite el...
متن کاملOn the geometric properties of the semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equation
The semi-Lagrangian discontinuous Galerkin method, coupled with a splitting approach in time, has recently been introduced for the Vlasov–Poisson equation. Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes. In this paper we study the conservation of important invari...
متن کامل